

Design and synthesis of non-cytotoxic tetrahydrothieno[3,2-*c*]pyridine derivatives exhibiting complement inhibition activity

Hoshang E Master^{a*}, Shabana I Khan^b & Krishna A Poojari^a

^aNadkarni Sakasa Research Laboratory, Department of Chemistry, St. Xavier's College, Mumbai 400 001, India

E-mail: kpoojari@rediffmail.com

^bNational Centre for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA

E-mail: skhan@olemiss.edu

Received 20 July 2006; accepted (revised) 16 August 2007

A series of 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine derivatives have been synthesized and evaluated for their activity on the activation of human complement (classical pathway) and their intrinsic haemolytic activity. The *in vitro* assay results of these analogues for inhibition of complement activity reveals improved inhibitory activity for some of the analogues over existing tetrahydrothienopyridine derivatives like Ticlopidine and Clopidogrel. Significantly, these analogues did not exhibit any haemolytic activity and are non-cytotoxic to human cell lines.

Keywords: Tetrahydrothieno[3,2-*c*]pyridine, non-cytotoxic, complement inhibition, haemolysis, classical pathway

Twentieth century has seen extensive research activity with thienopyridine moiety. Several drugs were designed and explored among huge number of synthetic molecules, but only very few of them found clinical use. Tetrahydrothienopyridine derivatives like Ticlopidine and Clopidogrel¹ are among the active molecules in the field of antithrombotic activity currently available in the market.

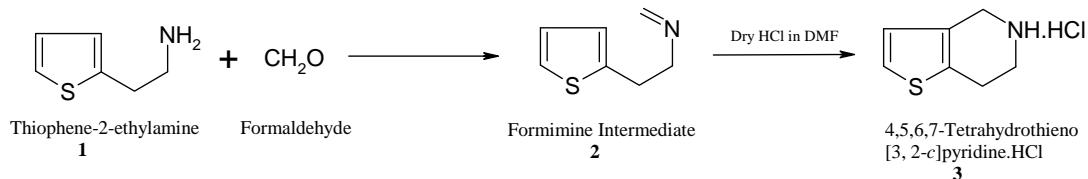
In the ongoing research activity, dealing with design and synthesis of new complement inhibitors, an attempt has been made to design and synthesize analogues of tetrahydrothieno[3,2-*c*]pyridine and evaluate them for possible clinical application in the field of complement inhibition.

Complement is a vital part of human body's immune system, providing a highly effective means for the destruction of invading microorganisms and for immune complex elimination^{2,3}. Clinical and experimental evidence underlines the prominent role of complement in the pathogenesis of numerous inflammatory diseases⁴⁻⁶, but also organ failure subsequent to ischemia reperfusion injury, sepsis, multiple trauma and burn.

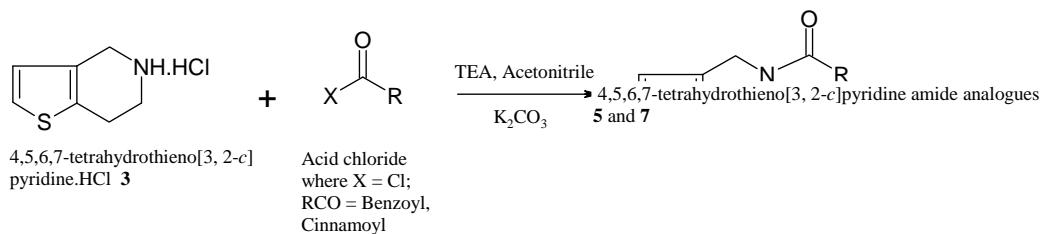
Only recently complement has also been implicated in neurodegenerative disorders such as Alzheimer's disease⁷, multiple sclerosis⁸ and Guillain-Barre syndrome⁹. The complement system is ubiquitous and is constantly active within living species. The

complement system can be activated by and act against, both self and non-self. Under normal conditions, efficient regulation prevents activation against self, however under pathological conditions complement regulation breaks down and activation against self is inevitable¹⁰. Therefore, it is crucial to develop an array of externally administered therapeutic agents, which would control the various steps of complement activation under condition of cellular stress or disease.

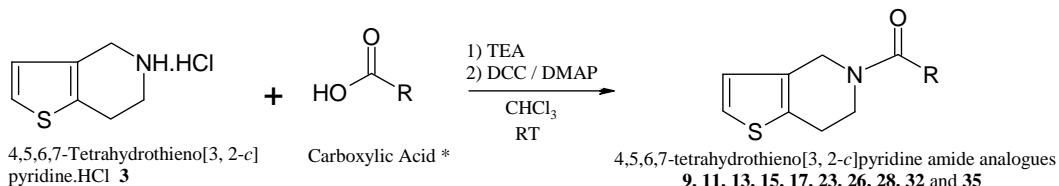
The complement mediated damage can be prevented by specific inhibition of the classical complement pathway without affecting the antimicrobial functions of the complement system *via* the alternative pathway and the lectin pathway¹¹.


Although several efforts have been made in this direction, there are currently no efficient anti-complement drugs available clinically. A variety of synthetic compounds have been tested for their impact on the complement system, but most of them are either toxic or not complement specific or require unrealistically high concentration to inhibit complement *in vivo*¹².

The current interest in the development of complement inhibitors has emerged due to the involvement of the complement system in several disease processes¹²⁻¹⁶.


As part of the efforts to develop new complement inhibitors, low molecular weight analogues were synthesized and their structure-activity relationship (SAR) towards complement inhibition was studied^{17,18}.

In the present study, an attempt has been made to synthesize derivatives of 4,5,6,7-tetrahydrothieno- [3,2-*c*]pyridine (THTP), a versatile synthon in medicinal chemistry. Various amide derivatives of THTP (**5**, **7**, **9**, **11**, **13**, **15**, **17**, **23**, **26**, **28**, **32**, and **35**) with a variety of substituted phenyl and aliphatic moiety were synthesized and their activity was evaluated for the inhibition of activation of human complement (classical pathway). Their intrinsic haemolytic activity on erythrocytes (RBCs) has also been investigated.


The synthetic strategy is outlined in **Schemes I** and **II** (ref. 19).

Synthesis of 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine hydrochloride **3**

Method A

* Carboxylic acids $RCOOH$ corresponds to:
 Acetic acid **8**; 2-Chlorobenzoic acid **10**; 2-Chlorophenylacetic acid **12**; 2,5-Dichlorobenzoic acid **14**;
 α -Bromo- α -(2-chloro)phenylacetic acid **16**; 2-Benzyl-2-acrylic acid **22**; 3-Acetylthio-2-benzylpropionic acid **25**;
 α -Acetamidocinnamic acid **27**; N-(t-Butoxycarbonyl)methionine **30****, 2-Chlorocinnamic acid **34**.

Amide **31 obtained after reacting compound **30** with THTP, is treated with solution of dry HCl in Methanol to get the final product **32** after deprotection of t-BOC group

Method B

Synthesis of 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine amide analogues

Scheme I — Synthesis of 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine amide analogues

Results and Discussion

The target compounds (**3**, **5**, **7**, **9**, **11**, **13**, **15**, **17**, **23**, **26**, **28**, **32**, and **35**) along with Ticlopidine and Clopidogrel were evaluated for their ability to inhibit the *in vitro* activation of human complement (classical pathway) as described earlier^{17,20}.

The intrinsic haemolytic activity of compounds was also determined by incubating them with sensitized sheep erythrocytes (RBCs) in the absence of complement and monitoring the complement independent lysis.

Analogues of THTP.HCl, **3** were tested upto a maximum concentration of 286 μ g/mL, using a stock solution of 5 mg/mL in DMSO.

Ursolic acid and oleanolic acid were used as positive controls^{17,21}. DMSO was used as vehicle control.

The compounds were also tested for their *in vitro* cytotoxicity against mammalian cell lines (VERO cells: Kidney fibroblast and LLC-PK₁: Kidney Epithelial cells) using Neutral Red Assay²² in a similar way as described earlier^{18,23}.

The results of complement inhibition activity are reported as IC₅₀ values in **Table I**.

As the principal biological role for the complement cascade is the neutralization and removal of invading pathogens, complement system plays an important part in the immune system. However, diseases characterized by excessive or uncontrolled comple-

ment activity lead to many inflammatory conditions such as Adult Respiratory Distress Syndrome (ARDS) or myocardial infarction, where, if the pathology is acute then immediate relief of symptoms could be life saving and prevent permanent damage.

The analogues of tetrahydrothienopyridine have been mainly studied for antithrombotic, antiplatelet and anticoagulant activity, which are associated with cardiovascular ailments like ARDS or myocardial infarction²⁴. As unwanted complement activity also leads to similar cardiovascular situations as mentioned above, it was thought interesting to explore

Table I — Inhibition of complement activity (classical pathway) and haemolytic activity of amide analogues of 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine (THTP)

Compd	R	Inhibition of Complement IC ₅₀ (μM) ^a	Haemolytic activity EC ₅₀ (μM) ^b	Cytotoxicity IC ₅₀ (μg/mL)	
				Vero Cells	LLC-PK ₁ Cells
3	H (THTP.HCl)	NA	NA	NC	NC
5	Cinnamoyl	780	NA	NC	NC
7	Benzoyl	494	NA	NC	NC
9	Acetyl	>1577	NA	NC	NC
11	2-Chlorobenzoyl	NA	NA	NC	NC
13	2-Chlorophenylacetyl	NA	NA	NC	NC
15	2,5-Dichlorobenzoyl	641	NA	NC	NC
17	α-Bromo-α-(2-chloro) phenylacetyl	NA	NA	18.8	15
23	2-Benzyl-2-ene propionyl	636	NA	NC	NC
26	3-Acetylthio-2-benzylpropionyl	78	NA	NC	NC
28	α-Acetamidocinnamoyl	NA	NA	NC	NC
32	α-Amino-α-methylethyl sulphide acetyl	407	NA	NC	NC
35	2-Chlorocinnamoyl	944	NA	NC	NC
Ticlopidine	2-Chlorobenzyl	NA	NA	NC	NC
Clopidogrel	α-Carboxymethyl-2-chlorobenzyl	NA	NA	NC	NC
Ursolic acid	-	54.75			
Oleanolic acid	-	79.95			
Doxorubicin^c	-	-	-	> 5	0.3

^aThe concentration of the compound required to inhibit complement mediated haemolysis of sensitized sheep RBCs by 50% compared to vehicle control. IC₅₀ values were obtained from dose-response curves of percent inhibition

^bThe concentration of compound effective to cause 50% haemolysis in the absence of complement. Values were obtained from dose-response curves of percent haemolysis

^cPositive control for cytotoxicity assay

VERO: monkey kidney fibroblasts; LLC-PK₁: Pig kidney epithelial cells

The highest concentration tested for cytotoxicity was 25 μg/mL

NC: Non-cytotoxic upto 25 μg/mL

NA: Not active

various analogues of tetrahydrothienopyridine along with Ticlopidine and Clopidogrel, currently available in market.

The study was aimed at understanding whether these compounds could exhibit complement activity, which in turn could also be useful in controlling cardiovascular conditions apart from controlling excessive complement activity.

Since all tetrahydrothienopyridine derivatives including Ticlopidine and Clopidogrel were found to be inactive^{25,26} in the *in vitro* assay for antithrombotic activity (antiplatelet aggregation activity) and *in vivo* testing facility for the same was not available with us, only complement inhibition activity studies were carried out as part of this study.

THTP derivatives like Ticlopidine and Clopidogrel involve the condensation of 2-chlorobenzyl and 2-chlorobenzyl substituted with α -carboxymethyl moiety respectively. In the present study, instead of alkyl carbon condensing to THTP part, condensation with carbonyl carbon forming amide linkage was studied. Moreover, various substituents were incorporated on carbonyl carbon starting with simple substitution like methyl, phenyl groups to substituted phenyl rings.

Selection of substituents was random with an idea to generate a range of substituents which may show complement inhibition activity. The *in vitro* assay revealed that THTP.HCl, **3** did not show any complement inhibition activity. Ticlopidine and Clopidogrel also did not exhibit any complement inhibition activity upto a maximum concentration of 286 μ g/mL (equivalent to 900 and 1600 μ M respectively). THTP.HCl, Ticlopidine and Clopidogrel did not display any haemolytic activity either.

Structural modifications were carried out by incorporating amide linkage instead of alkyl linkage as in Ticlopidine and Clopidogrel and it was interesting to note that when 2-chlorophenyl ring was incorporated, compound **11** did not exhibit any complement inhibition activity. However, when unsubstituted phenyl ring and disubstituted phenyl ring *viz.*, 2,5-dichlorophenyl were incorporated, compounds **7** and **15** exhibited complement inhibition with an IC_{50} values of 494 μ M and 641 μ M respectively. This clearly indicated that there is no significant contribution of 2-chlorophenyl substitution towards the activity owing to structural change.

Appearance of complement inhibition activity by these modifications prompted further investigations and various other substitutions were incorporated to

amide linkage and the structure activity relationship was studied.

Methyl substitution (**9**) caused inhibition of complement to <50% at the highest concentration of 286 μ g/mL ($IC_{50} > 1577 \mu$ M in **Table I**).

Incorporation of cinnamamide functionality to THTP moiety did not result in as much complement inhibition activity as observed in the case of cinnamic acid functional group in an earlier study¹⁸.

Compound **5** exhibited complement inhibition at IC_{50} of 780 μ M. Analogues of cinnamic acid like α -acetamidocinnamic acid on condensation with THTP moiety yielded compound **28** which did not exhibit any activity, while 2-chlorocinnamic acid amide linkage **35** exhibited inhibitory activity with an IC_{50} of 944 μ M.

Further, phenyl ring substituted aliphatic acid like derivatives of phenyl acetic acid were also explored.

Incorporation of 2-chlorophenylacetic acid generating compound **13** along with α -bromo substitution (compound **17**) did not exhibit any complement inhibition activity indicating no significant role of 2-chlorophenyl and other halogen substitution on aliphatic acid in making the condensed amide product effective against complement.

To explore amino acid substitution, *dl*-methionine was condensed with THTP generating amide linkage in compound **32** which exhibited complement inhibition activity at 407 μ M. These results demonstrate an improvement in activity upon incorporation of amino acid group as compared to other types of substitutions and opens up a new area of amino acid substitution to be explored for designing more potent and specific complement inhibitors.

Similarly, further incorporation of bulkier groups with reactive functional group sites was explored. Condensation of THTP with 2-benzyl-2-acrylic acid resulted in compound **23** that showed an IC_{50} of 636 μ M for complement inhibition. This contribution could be affected due to the presence of free olefin on the α -carbon atom to the carbonyl (amide link) carbon atom.

Further, to explore the possibilities of various substitutions on free olefin in compound **23**, one such substitution with thiolacetic acid **24** generating compound **26** was studied. Compound **26** was found to exhibit a potent complement inhibition activity with an IC_{50} of 78 μ M and was the most active analog of the series. This further endorses the significance of free olefin group on α -carbon atom which is

improved upon substitution with reactive groups *viz.*, thiolacetic acid **24**. This is contrary to the presence of halogen (*viz.*, bromide group) on α -carbon atom as in the case of compound **17** which lacked complement inhibition activity.

This study has added significant information in understanding structure-activity relationship for inhibitors of complement activity and the necessary criterion for the selection of relevant functionality in generating analogues of 4,5,6,7-Tetrahydrothieno[3,2-*c*]pyridine.

Significantly, all the compounds (**5**, **7**, **9**, **11**, **13**, **15**, **17**, **23**, **26**, **28**, **32** and **5**) including THTP.HCl **3**, Ticlopidine and Clopidogrel did not exhibit any intrinsic haemolytic activity upto the highest concentration tested (286 μ g/mL) as determined by incubating them with sensitized sheep erythrocyte (RBCs) in the absence of complement and determining the complement independent lysis of RBCs. Neither of these were cytotoxic to mammalian kidney cell lines up to 25 μ g/mL (data not included) thereby confirming their safety and therapeutic potential. Compound **26** with promising complement inhibition activity seems to be a potential candidate molecule for further study.

However, in earlier studies, most of the compounds reported to inhibit complement activity have also been reported to have cytotoxic properties^{12-14,21,23}.

Further study is warranted to investigate the action of target compound on specific complement inhibition pathways and generation of data on pharmacophore exhibiting complement inhibition activity.

Experimental Section

All chemicals, reagents and solvents were purchased from commercial sources where available and used as received.

Intermediates were characterized by FTIR, 1 H NMR and mass spectrometry (MS).

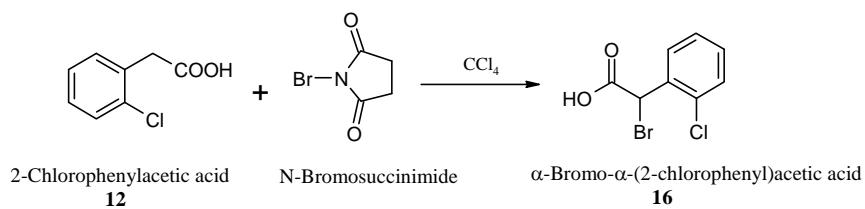
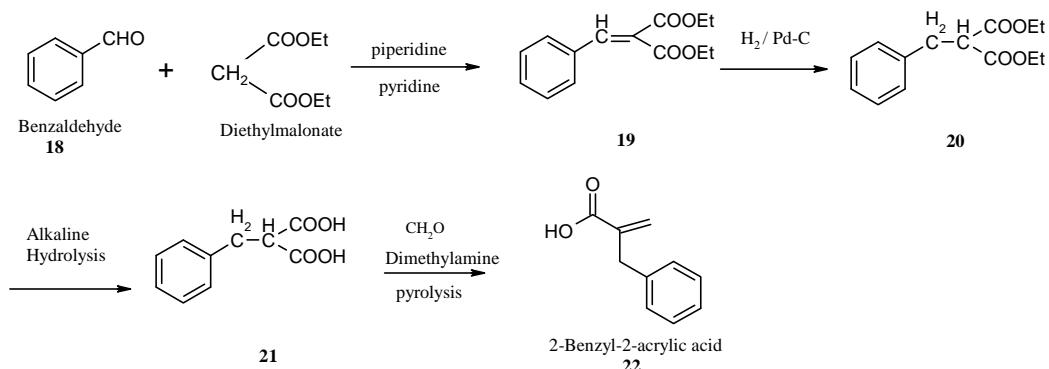
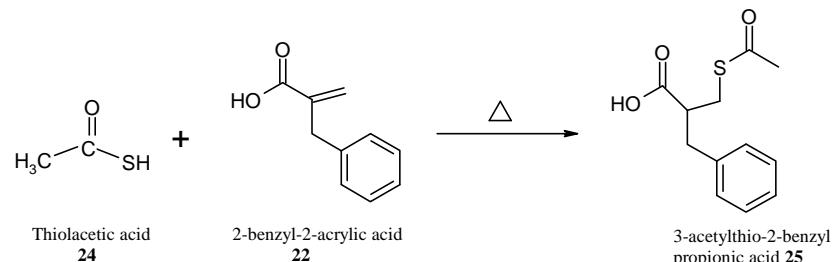
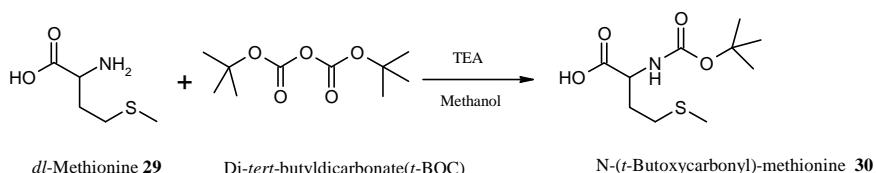
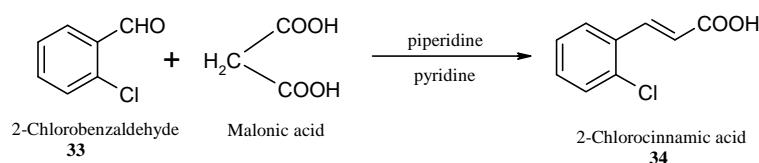
Various methods²⁷ exists for the synthesis of 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine hydrochloride **3**. It may be prepared by partial reduction of thieno[3,2-*c*]pyridine made from various routes²⁸.

4,5,6,7-Tetrahydrothieno[3,2-*c*]pyridine hydrochloride **3** was prepared as mentioned in patent GB1490050 wherein thiophene-2-ethylamine **1** was reacted with formaldehyde to form formimine

2. Formimine **2** on reacting with dry HCl in DMF gave a white precipitate of 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine hydrochloride (THTP.HCl) **3** in moderate yield (65-70%). Amide analogs of

THTP.HCl, **3** were synthesized by known simple reaction²⁹ using acid chloride *viz.*, cinnamoyl chloride **4** and benzoyl chloride **6** in presence of a base in suitable solvent to obtain amide analogues **5-7** in good yields (80-85%). Another convenient method³⁰ using dicyclohexylcarbodiimide (DCC)³¹ as carboxylic acid activator along with 4-dimethylaminopyridine (DMAP)³² was employed in presence of carboxylic acid *viz.*, acetic acid **8**, 2-chlorobenzoic acid **10**, 2-chlorophenyl acetic acid **12**; 2,5-dichlorobenzoic acid **14**, α -bromo- α -(2-chlorophenyl)acetic acid **16**, 2-benzyl-2-acrylic acid **22**, 3-acetyl-2-benzylpropionic acid **25**, α -acetamidocinnamic acid **27**, N-(*t*-butoxycarbonyl)-methionine **30** and 2-chlorocinnamic acid **34** respectively to form amide linkage obtaining amide analogues **9**, **11**, **13**, **15**, **17**, **23**, **26**, **28**, **32** and **35** in moderate yields.

Subsequently, some of the above mentioned intermediates *viz.*, α -bromo- α -(2-chlorophenyl)acetic acid **16**, 2-benzyl-2-acrylic acid **22** (ref. 33), 3-acetylthio-2-benzylpropionic acid **25** (refs 33,34), N-(*t*-butoxycarbonyl)-methionine **30** (refs 35-37) and 2-chlorocinnamic acid **34** (ref. 38) were also synthesized (Scheme II).






Synthesis of 4,5,6,7-tetrahydrothieno[3,2-*c*]pyridine hydrochloride (THTP.HCl, **3**)

Thiophene-2-ethylamine **1** (10 g, 0.0813 mole) was heated with 37% aq. formaldehyde (7.25 mL, 0.08943 mole) to yield formimine, which on treatment with dry hydrochloric acid in DMF (6N, 25 mL) yielded THTP.HCl, **3** (6.7 g, 65%). m.p. 220-30°C ; HPLC (Area %): 99.52%. Anal. C₇H₁₀CINS: Found C, 47.84; H, 5.68; Cl, 20.20; N, 7.95; S, 18.2. Calcd. C, 47.86; H, 5.70; Cl, 20.23; N, 7.98; S, 18.23%. IR (KBr): 3058 (C-H str, aromatic), 2873.7 (C-H str, aliphatic), 1591.7 (C=C asymmetric str), 1497.5, 1459.7 (C=C str, ring), 1215 (C-N str), 979.8 (C-H bending, *trans* olefin), 745.3 cm⁻¹ (C-H def, aromatic); 1 H NMR (CD₃OD): δ 3.0-3.7 (m, 4H), 4.2-4.5(s, 2H), 6.8-7.5 (m, 2H); MS: *m/z* 139 (M⁺ - 36).

General method for the synthesis of amide analogue (5-7) of THTP.HCl

Method A

4,5,6,7-Tetrahydrothieno(3,2-*c*) pyridine hydrochloride (THTP.HCl, **3**, 1 eq.) was treated with triethylamine (1 eq.) in acetonitrile. Potassium carbonate (1.25 eq.) was added to it and stirred. Acid chloride (**4** and **6**, 1 eq.) was added to it maintaining

Synthesis of α -Bromo- α -(2-chlorophenyl)acetic acid **16**Synthesis of 2-Benzyl-2-acrylic acid **22**Synthesis of 3-acetylthio-2-benzylpropionic acid **25**Synthesis of N-(*t*-butoxycarbonyl)methionine **30**Synthesis of 2-chlorocinnamic acid **34**Intermediates used in **Scheme I****Scheme II** — Synthesis of 2-chlorocinnamic acid **34** from intermediates used in **Scheme I**

reaction temperature. After completion of addition, reaction temperature was gradually raised to RT and subsequently heated to reflux for 4-5 hr to obtain the desired product (**5** and **7**) in good yield (80-85%).

4, 5, 6, 7-Tetrahydrothieno(3,2-c)pyridine-5-cinnamamide, 5 m.p. 170-74°C; GC (Area %): 100.0%. Anal. C₁₆H₁₅NOS: Found C, 71.32; H, 5.54; N, 5.18; S, 11.86. Calcd. C, 71.38; H, 5.58; N, 5.20; S, 11.90%. IR (KBr): 3058 (C-H str, aromatic), 2873.7 (C-H str, aliphatic), 1643 (C=O str. amide), 1591.7 (C=C asymmetric str), 1612, 1497.5, 1459.7 (C=C str, ring), 1215 (C-N str), 979.8 (C-H bending, *trans* olefin), 745.3 cm⁻¹ (C-H def, aromatic); ¹H NMR (CDCl₃): δ 2.8-3.2 (t, 2H), 3.8-4.2 (m, 2H), 4.8 (s, 2H), 6.6-6.9 (d, 1H), 6.9-7.2 (d, 1H); 7.2-8.0 (m, 7H); MS: m/z 269 (M⁺).

4,5,6,7-Tetrahydrothieno(3,2-c)pyridine-5-benzamide, 7 GC (Area %): 100.0% (Oily product). Anal. C₁₄H₁₃NOS: Found C, 69.11; H, 5.32; N, 5.72; S, 13.13. Calcd. C, 69.14; H, 5.35; N, 5.76; S, 13.17%. IR (CHCl₃): 3061.3 (C-H str, aromatic), 2926.4 (C-H str, aliphatic), 1633 (C=O str. amide), 1492.9, 1430.7 (C=C str, ring), 1217 (C-N str), 750 cm⁻¹ (C-H def., aromatic); ¹H NMR (CDCl₃): δ 2.6-3.3 (t, 2H), 3.4-4.1 (m, 2H), 4.7 (4.5-5.0) (s, 2H), 7.0-7.7 (m, 7H); MS: m/z 243 (M⁺).

General method for the synthesis of amide analogue (**9**, **11**, **13**, **15**, **17**, **23**, **26**, **28**, **32** and **35**) of THTP.HCl

Method B

4,5,6,7-Tetrahydrothieno(3,2-c)pyridine hydrochloride (THTP.HCl, **3**, 1 eq.) was treated with triethylamine (1 eq.) in chloroform to obtain the free base. Dicyclohexylcarbodiimide (DCC, 1 eq.) and 4-dimethylaminopyridine (DMAP, 0.1 eq.) was added to it followed by the desired carboxylic acid (**8**, **10**, **12**, **14**, **16**, **22**, **25**, **27**, **30** and **34**) (1 eq.) to obtain the product in good yield (55-60%).

Compound **32** was obtained after deprotection of *t*-BOC derivative of the amide **31** (obtained after reaction with *t*-BOC amino acid **30**).

4,5,6,7-Tetrahydrothieno(3,2-c)pyridine-5-acetamide, 9 m.p. 145-50°C ; GC (Area %): 99.47%. Anal. C₉H₁₁NOS: Found C, 59.65; H, 6.07; N, 7.71; S, 17.64. Calcd. C, 59.67; H, 6.08; N, 7.73; S, 17.68%. IR (KBr): 3009 (C-H str, aromatic), 2935 (C-H str, aliphatic), 1635.6 (C=O str. amide), 1438 (C=C str, ring), 1371 (C-H def., alkane -CH₃), 1216 cm⁻¹ (C-N str); ¹H NMR (CDCl₃): δ 1.6-2.2 (s, 3H), 2.5-3.4 (t,

2H), 3.4-4.2 (m, 2H), 4.6 (4.2-4.8) (s, 2H), 6.3-7.4 (m, 2H); MS: m/z 181 (M⁺).

4, 5, 6, 7-Tetrahydrothieno(3, 2-c)pyridine-5-(2-chloro)benzamide, 11 m.p. 182-84°C ; GC (Area %): 99.49%. Anal. C₁₄H₁₂ClNOS: Found C, 60.53; H, 4.31; Cl, 12.75; N, 5.03; S, 11.52. Calcd. C, 60.54; H, 4.32; Cl, 12.79; N, 5.05; S, 11.53%. IR (KBr): 3010 (C-H str, aromatic), 2938, 2854 (C-H str, aliphatic), 1633 (C=O str. amide), 1430 (C=C str, ring), 1218 (C-N str), 831 (C-H def), 706 cm⁻¹ (C-Cl str); ¹H NMR (CDCl₃): δ 2.6-3.2 (t, 2H), 3.3-3.8 (m, 2H), 4.4 (3.8-4.6) (s, 2H), 6.4-8.0 (m, 6H); MS: m/z 277 (M⁺).

4,5,6,7-Tetrahydrothieno(3,2-c)pyridine-5-(2-chlorophenyl)acetamide, 13 m.p. 192-96°C; GC (Area %): 99.67%. Anal. C₁₅H₁₄ClNOS: Found C, 61.73; H, 4.8; Cl, 12.15; N, 4.78; S, 10.98. Calcd. C, 61.75; H, 4.80; Cl, 12.18; N, 4.80; S, 10.98%. IR (KBr): 3019 (C-H str, aromatic), 2969, 2852 (C-H str, aliphatic), 1643 (C=O str. amide), 1445.7 (C=C str, ring), 1226.4 (C-N str), 706 cm⁻¹ (C-Cl str); ¹H NMR (CDCl₃): δ 2.5-3.2 (t, 2H), 3.5-4.2 (m, 2H), 3.9-4.0 (s, 2H), 4.3-4.8 (s, 2H), 6.4-7.5 (m, 6H); MS: m/z 291 (M⁺).

4,5,6,7-Tetrahydrothieno (3,2-c)pyridine-5-(2,5-dichloro)benzamide, 15 m.p. 189-90°C; GC (Area %): 99.62%. Anal. C₁₄H₁₁Cl₂NOS: Found C, 53.83; H, 3.52; Cl, 22.75; N, 4.48; S, 10.26. Calcd. C, 53.85; H, 3.53; Cl, 22.76; N, 4.49; S, 10.026%. IR (KBr): 3009 (C-H str, aromatic), 2936, 2857 (C-H str, aliphatic), 1638 (C=O str. amide), 1439 (C=C str, ring), 1223 (C-N str), 761 (C-H def.), 671 cm⁻¹ (C-Cl str); ¹H NMR (CDCl₃): δ 2.7-3.2 (t, 2H), 3.2-3.9 (m, 2H), 4.4 (4.2-4.5) (s, 2H), 6.5-7.6 (m, 5H); MS: m/z 313 (M⁺).

4, 5, 6, 7-Tetrahydrothieno(3, 2-c)pyridine-5-(α -bromo- α -(2-chlorophenyl))acetamide, 17 m.p. 210-15°C; GC (Area %): 99.80%. Anal. C₁₅H₁₂BrClNOS: Found C, 48.71; H, 3.22; Br, 21.62; Cl, 9.6; N, 3.76; S, 8.62. Calcd. C, 48.73; H, 3.25; Br, 21.63; Cl, 9.61; N, 3.79; S, 8.66%. IR (KBr): 3015 (C-H str, aromatic), 2846 (C-H str, aliphatic), 1655.5 (C=O str. amide), 1566, 1429 (C=C str, ring), 1217 (C-N str), 610 cm⁻¹ (C-Br str); ¹H NMR (CDCl₃): δ 2.5-3.1 (t, 2H), 3.6-4.2 (m, 2H), 4.7 (4.3-4) (s, 2H), 6.2 (6.1-6.3) (s, 1H), 6.9-7.5 (m, 6H); MS: m/z 369 (M⁺).

4, 5, 6, 7-Tetrahydrothieno(3, 2-c)pyridine-5-(2-benzyl-2-ene)propionamide, 23 m.p. 188-92°C; GC (Area %): 99.98%. Anal. C₁₇H₁₇NOS: Found C, 72.05; H, 6.0; N, 4.94; S, 11.3. Calcd. C, 72.08; H, 6.01; N, 4.95; S, 11.31%. IR (KBr): 3009 (C-H str, aromatic), 2935, 2853 (C-H str, aliphatic), 1634 (C=O str. amide), 1612 (C=C str, terminal olefin), 1510,

1466, 1441 (C=C str, ring), 1254 (C-N str), 937 cm^{-1} (C-H def., olefin); ^1H NMR (CDCl_3): δ 2.3-2.9 (t, 2H), 3.2-4.0 (m, 2H), 3.7 (s, 2H), 4.5(4.2-4.8) (s, 2H), 5.0-5.4 (d, 2H, terminal olefin), 6.2-7.6 (m, 7H); MS: m/z 283 (M^+).

4,5,6,7-Tetrahydrothieno(3,2-c)pyridine-5-(3-acetylthio-2-benzyl) propionamide, 26 GC (Area %): 99.14% (viscous liquid). Anal. $\text{C}_{19}\text{H}_{21}\text{NO}_2\text{S}_2$: Found C,63.5; H,5.83; N,3.88; S,17.82. Calcd. C,63.51; H,5.85; N,3.90; S,17.83%. IR (CHCl_3): 3064 (C-H str, aromatic), 2926 (C-H str, aliphatic), 1643.4 (C=O str, amide), 1434.7 (C=C str, ring), 1225 (C-N str), 750 (C-H def., aromatic), 620 cm^{-1} (C-S str); ^1H NMR (CDCl_3): δ 2.1-2.5 (d, 4H), 2.5-3.1 (t, 2H), 3.1-3.6 (m, 2H), 3.2 (s, 3H), 3.6-4.0 (m, 1H), 4.6(4.4-4.8) (s, 2H), 6.4-7.5 (m, 7H); MS: m/z 359 (M^+).

4,5,6,7-Tetrahydrothieno(3,2-c)pyridine-5-(α -acetamido)cinnamamide, 28 m.p. 147-49°C; GC (Area %): 99.84%. Anal. $\text{C}_{18}\text{H}_{18}\text{N}_2\text{O}_2\text{S}$: Found C,66.25; H,5.51; N,8.55; S,9.79. Calcd. C,66.26; H,5.52; N,8.59; S,9.82%. IR (KBr): 3416 (N-H str), 3010 (C-H str, aromatic), 2936 (C-H str, aliphatic), 1685, 1628 (C=O str, amide), 1591 (C=C str, asymmetric), 1473, 1438 (C=C str, ring), 1370 (C-H def., alkane), 1237, 1207 (C-N str), 1050 (C-H def., *trans* olefin), 790 cm^{-1} (C-H def, trisubstituted alkene); ^1H NMR (CDCl_3): δ 1.8-2.3 (s, 3H), 2.7-3.1 (t, 2H), 3.7-4.2 (m, 2H), 4.7(4.3-4.9) (s, 2H), 5.7-6.0 (s, 1H), 6.6-7.8 (m, 7H); MS: m/z 326 (M^+).

4,5,6,7-Tetrahydrothieno(3,2-c)pyridine-5-(α -amino- α -methylethylsulphide)acetamide, 32 GC (Area %): 99.91% (viscous liquid). Anal. $\text{C}_{12}\text{H}_{18}\text{N}_2\text{OS}_2$: Found C, 53.31; H, 6.64; N, 10.38; S, 23.68. Calcd. C, 53.33; H, 6.67; N, 10.37; S, 23.70%. IR (CHCl_3): 3383 (C-H str, aromatic), 3050, 2921, 2855 (C-H str, aliphatic), 1631.9 (C=O str, amide), 1438 (C=C str, ring), 1226.9 (C-N str), 826 cm^{-1} (C-H def., aromatic); ^1H NMR (CDCl_3): δ 1.1-1.6 (q, 2H), 1.6-2.4 (t, 2H), 2.2(2.1-2.3) (s, 3H), 2.4-3.2 (t, 2H), 3.4-4.3 (m, 3H), 4.7(4.5-4.9) (s, 2H), 6.6-7.3 (m, 2H); MS: m/z 270 (M^+).

4, 5, 6, 7-Tetrahydrothieno(3, 2-c)pyridine-5-(2-chloro)cinnamamide, 35 m.p.186-89°C; GC (Area %): 99.52%. Anal. $\text{C}_{16}\text{H}_{14}\text{ClNOS}$: Found C,63.24; H,4.59; Cl,11.69; N,4.59; S,10.52. Calcd. C,63.26; H,4.61; Cl,11.70; N,4.61; S,10.54%. IR (KBr): 3010 (C-H str, aromatic), 2934, 2854 (C-H str, aliphatic), 1646 (C=O str, amide), 1609 (C=C str, olefin), 1472, 1433 (C=C str, ring), 1224 (C-N str), 973 (C-H def, disubstituted alkene, *trans*), 790 cm^{-1} (C-H def.,

aromatic); ^1H NMR (CDCl_3): δ 2.7-3.2 (t, 2H), 3.7-4.2 (m, 2H), 4.7(4.6-5.0) (s, 2H), 6.6-7.2 (2d, 2H, olefin), 7.1-7.8 (m, 6H); MS: m/z 303 (M^+).

References

- 1 Jakubowski J A, Smith G F & Sail D J, in *Annual Reports in Medicinal Chemistry*, 27, **1992**, 99.
- 2 Muller-Eberhard H J, *Ann Rev Biochem* 57, **1988**, 321.
- 3 Rother K, Till G O & Haensch G M, *The Complement System*, 2nd, revised edn. (Springer Berlin, Heidelberg, New York), **1998**.
- 4 Morgan B P, *Complement Clinical Aspects and Relevance to Disease*, (Harcourt Brace Jovanovich, London, New York), **1990**.
- 5 Volanakis J F & Frank M M, *The Human Complement System in Health and Disease*, (Marcel Dekker New York, Basel, Hong Kong), **1998**.
- 6 Linton S M & Morgan B P, *Mol Immunol*, 36, **1999**, 905.
- 7 Mukherjee P & Pasinetti G M, *J Neuroimmunol*, 105, **2000**, 124.
- 8 Garred P, *J Neural Sci*, 157, **1998**, 68.
- 9 Putzer G A, Figarella, Branger D, Bjouvier Labit C, Liprandi A, Bian W N & Pelliseier J F, *J Neurol Sci*, 174, **2000**, 16.
- 10 Morikis D & Lambris J D, *Biochem Soc Trans*, 30, **2001**, 1026.
- 11 Roos A, Nauta A J, Broers D, Raber-Krol M C, Trouw L A, Drijfhout J W & Daha M R, *J Immunol*, 167, **2001**, 7052.
- 12 Asghar S S, *Pharmacol Rev*, 36, **1984**, 223.
- 13 Hagmann W K & Sindelar R D, in *Annual Reports in Medicinal Chemistry*, edited by Bristol J A, (Academic Press, San Diego), **1992**, 199.
- 14 Patrick R A & Johnson R E, in *Annual Reports in Medicinal Chemistry*, edited by Hess H J, (Academic Press, New York), **1980**, 193.
- 15 Sunyer J O, Zarkadis I K & Lambris J D, *Immunol Today*, 19, **1998**, 519.
- 16 Sahu A & Lambris J D, *Immunopharmacology*, 49, **2000**, 133.
- 17 Master H E, Khan S I & Poojari K A, *Bioorg Med Chem Lett*, 13, **2003**, 1249.
- 18 Master H E, Khan S I & Poojari K A, *Bioorg Med Chem*, 13, **2005**, 4891.
- 19 The spectral and analytical characterization data collected for all the final compounds and intermediates were consistent with the proposed structures.
- 20 Srivastava R P, Zhu X, Walker L A & Sindelar R D, *Bioorg Med Chem Lett*, 5, **1995**, 2429.
- 21 Assefa H, Nimrod A, Walker L & Sindelar R, *Bioorg Med Chem Lett*, 9, **1999**, 1889.
- 22 Borenfreund E, Babich H & Martin-Alaguacil N, *In Vitro Cell Dev Biol*, 26, **1990**, 1030.
- 23 Assefa H, Nimrod A, Walker L & Sindelar R, *Bioorg Med Chem Lett*, 11, **2001**, 1619.
- 24 Gent M, *A systematic overview of randomized trials of antiplatelet agents for the prevention of stroke, myocardial infarction and vascular death in, Ticlopidine, Platelets and Vascular Disease*, edited by Hass W K and Easton J D, (Springer Verlag, New York), **1993**, 99.
- 25 (a) Yoneda K, Iwamura R, Kishi H, Yoichi M, Mogami K & Kobayashi S, *Br J Pharm*, 142, **2004**, 551; (b) Pereillo J, Maftouh M, Andrieu A, Uzabiaga M, Fedeli O, Savi P, Pascal

26 Savi P, Pereillo J M, Uzabiaga M, Combalbert J, Picard C, Maffrand J P, Pascal M & Herbert J M, *Thromb Haemost*, 84, **2000**, 891.

27 (a) Warm A, *Heterocycles*, 34 (12) **1992**, 2263; (b) Heymes A & Maffrand Jean-Pierre *GB Patent* 1490050, **1977**.

28 (a) Wikel J H, Denney M L & Vasileff R T, *J Heterocyclic Chem*, 30, **1993**, 289; (b) Maffrand J P & Eloy F, *J Heterocyclic Chem*, 13, **1976**, 1347.

29 Beckwith, in Zabicky, *The Chemistry of Amides*, (Wiley New York), **1970**, 73.

30 (a) Klausner & Bodansky, *Synthesis*, **1972**, 453; (b) Sheehan & Hess, *J Am Chem Soc*, 77, **1955**, 1067; (c) Gross, *The Peptides*, 3 vols, (Academic Press, New York), **1979-1981**; (d) Bodanszky & Bodanszky, *The Practice of Peptide Synthesis*, (Springer, New York), **1984**; (e) Larock, *Comprehensive Organic Transformations*, (VCH, New York), **1989**, 972.

31 (a) Kurzer F & Douraghi-Zadeh K, *Chem Rev*, 67, **1967**, 107; (b) Williams A & Ibrahim I T, *Chem Rev*, 81, **1967**, 589; (c) Marian Mikoz, Lajczyk & Piotr Kiez Ibansinski, *Tetrahedron*, 37, **1981**, 233.

32 Weises B & Steglich W, *Angew Chem, Int Ed*, 17, **1978**, 522.

33 Tetsutaro P, Mura M I, Nakamura Y & Nishino J, *J Med Chem* 35, **1992**, 602.

34 Ondetti M A, Conden M E & Reid, *Biochemistry*, 18, **1979**, 1427.

35 Iwao M & Kuraishi T, *Org Syn Coll*, 7, **1990**, 70.

36 (a) Keller O, Keller W E, Look G V & Wersin G, *Org Syn Coll*, 9, **1998**, 124; (b) Garner P & Park J M, *Org Syn Coll*, 9, **1998**, 300.

37 Wolfgang S & Munster P, *Synthesis*, **1987**, 223.

38 Tietze L F & Eicher T, *Reactions and Synthesis in the Organic Chemistry Laboratory*, (University Science Books, Mill Valley), **1989**, (p 379, e.g., O-26)